Adsorption Equilibrium

- Adsorption vs. Absorption
 - Adsorption is accumulation of molecules on a surface (a surface layer of molecules) in contact with an air or water phase
 - Absorption is dissolution of molecules within a phase,
 e.g., within an organic phase in contact with an air or water phase

Adsorption

PHASE I

'PHASE' 2

Absorption ("partitioning")

PHASE I

 $P_{gas} = K_H c_{aq}$

Henry's Law

Causes of Adsorption

- Dislike of Water Phase 'Hydrophobicity'
- Attraction to the Sorbent Surface
 - van der Waals forces: physical attraction
 - electrostatic forces (surface charge interaction)
 - chemical forces (e.g., π and hydrogen bonding)

Adsorbents in Natural & Engineered Systems

- Natural Systems
 - Sediments
 - Soils
- Engineered Systems
 - Activated carbon
 - Metal oxides (iron and aluminum as coagulants)
 - Ion exchange resins
 - Biosolids

Steps in Preparation of Activated Carbon

- Pyrolysis heat in absence of oxygen to form graphitic char
- Activation expose to air or steam; partial oxidation forms oxygen-containing surface groups and lots of tiny pores

Factors Affecting Activated Carbon Properties

- Starting materials (e.g., coal vs. wood based) and activation
- Pores and pore size distributions
- Internal surface area
- Surface chemistry (esp. polarity)
- Apparent density
- Particle Size: Granular vs. Powdered (GAC vs. PAC)

Characteristics of Some Granular Activated Carbons

Characteristics of Activated Carbons (Zin	mmer, 1988)		
Activated Carbon	F 300	H 71	C25
Raw Material	Bituminous Coal	Lignite	Coconut Shell
Bed Density, ρ _F (kg/m³)	500	380	500
Particle Density, ρ _P (kg/m³)	868	685	778
Particle Radius (mm)	0.81	0.90	0.79
Surface Area BET (m²/g)	875	670	930
Pore Volume (cm³/g)			
Micro- (radius < 1nm)	0.33	0.21	0.35
Meso- (1nm < r < 25nm)		0.38	0.14
Macro- (radius > 25nm)		0.58	0.16
Total		1.17	0.65

Example 7-1. Adsorption of CrO_4^{2-} onto two different minerals is studied, yielding the isotherms shown graphically below. You wish to reduce the concentration of CrO_4^{2-} in a wastewater from 0.2 to 0.02 mmol/L (roughly 10 to 1 mg Cr/L) by sorption in a batch treatmen process, using the minimum dose (g/L) of solid.

- (a) Which adsorbent would you use, and why?
- (b) What adsorbent dose is required?

Assuming mineral surface started with q = 0:

$$\begin{split} c_{\rm solid} &= \frac{c_{\rm init} - c_{\rm fin}}{q_{\rm fin}} \\ &= \frac{\left(0.20 - 0.02\right) \text{ mmol CrO}_4^{\ 2-}/\text{L}}{0.65 \text{ mmol CrO}_4^{\ 2-}/\text{g solid}} = 0.277 \text{ g solid/L} \end{split}$$

If mineral surface started with q > 0:

$$c_{\rm init}V_{\rm L} + q_{\rm init}c_{\rm solid}V_{\rm L} = c_{\rm fin}V_{\rm L} + q_{\rm fin}c_{\rm solid}V_{\rm L}$$

$$c_{\text{solid}} = \frac{c_{\text{init}} - c_{\text{fin}}}{q_{\text{fin}} - q_{\text{init}}}$$

Commonly Reported Adsorption Isotherms

Linear: $q = k_{lin}c$ Langmuir: $q = q_{max} \frac{K_L c}{1 + K_L c}$

Freundlich: $q = k_f c^n$

Shape of Langmuir Isotherm

Shape of Freundlich Isotherm

Shape of Freundlich Isotherm (log scale)

$$\log q = \log k_f + n \log c$$

Example. Adsorption of benzene onto activated carbon has been reported to obey the following Freundlich isotherm equation, where c is in mg/L and q is in mg/g:

$$q_{benz} = 50.1 \ c_{benz}^{0.533}$$

A solution at 25°C containing 0.50 mg/L benzene is to be treated in a batch process to reduce the concentration to less than 0.01 mg/L. The adsorbent is activated carbon with a specific surface area of 650 m²/g. Compute the required activated carbon dose.

Solution. The adsorption density of benzene in equilibrium with c_{eq} of 0.010 mg/L can be determined from the isotherm expression:

$$q_{benz} = 50.1 c_{benz}^{0.533} = 4.30 \text{ mg/g}$$

A mass balance on the contaminant can then be written and solved for the activated carbon dose:

$$c_{tot,benz} = c_{benz} + q_{benz} c_{AC}$$

$$0.50 = 0.010 + 4.30 \text{ mg/g} \ c_{AC}$$

$$c_{AC} = 0.114 \text{ g/L} = 114 \text{ mg/L}$$

Example If the same adsorbent dose is used to treat a solution containing 0.500 mg/L toluene, what will the equilibrium concentration and adsorption density be? The adsorption isotherm for toluene is:

$$q_{tol} = 76.6 \ c_{tol}^{0.365}$$

Solution. The mass balance on toluene is:

$$c_{tot,tol} = c_{tol} + q_{tol}c_{AC}$$

$$0.50 = c_{tol} + 76.6 c_{tol}^{0.365} \quad 0.114 \text{ g/L}$$

$$c_{tol} = 3.93 \times 10^{-4} \text{ mg/L}$$

General Process Design Features

- Contactors provide large surface area
- Types of contactors
 - Continuous flow, slurry reactors
 - Batch slurry reactors (infrequently)
 - Continuous flow, packed bed reactors
- Product water concentration may be
 - Steady state or
 - Unsteady state

Powdered Activated Carbon (PAC)

Process Operates at Steady-State, c_{out} = constant in time

Packed Bed Adsorption

Natural Packed Bed – subsurface with groundwater flow

Engineered Packed Bed- granular activated carbon

EBCT = empty-bed contact time (V_{bed}/Q)

Adsorptive capacity is finite (fixed amount of adsorbent in bed)

Process operates at unsteady state, c_{OUT} must increase over time